

Writing Sturdy Python

In Three Parts:
I.Unit Testing

II.Static Analysis (pylint, etcetera)
III.Gradual Typing (mypy, etcetera)

Where To Use These

● You likely want some or all of this in your text
editors and/or IDE’s

● However, the place to really pile this on is in
your “build”, like in your Continuous Integration
software (Jenkins, Hudson, whatever)

I. Unit Testing

● Very Important Without Static Analysis and
Gradual Typing

● Rather Important With Them – Similar To
Statically, Manifestly Typed Languages

● We had a good presentation on unit testing
recently, so I’m not going into detail.

Definitions Related To Typing

● Statically Typed: Types are determined at Compile Time
● Manifestly Typed: Types are explicitly declared by keyboarding in the

name of each variable’s type
● Type Inference: Types are figured out from context, and are not

manifestly spelled out
● Strongly Typed: Few to no implicit type conversions

● Java is statically, manifestly typed, and mostly strongly typed, the chief
exception perhaps being that you can add a number to a string

● Out of the box, Python is dynamically and mostly strongly typed, the chief
exception perhaps being that you can use almost anything in a boolean
context

II. Static Analysis – What is it?

● Examines your code, ignoring high dynamicity, looking for bugs
● For example:

– Syntax errors

– Variables set but not used

– Variables used but not set

– Formatted string mismatches

– Bad number of arguments to a callable

– No such module, or name not found in module

– No such symbol in object

– And more

Static Analysis Tools

● Pylint – very stringent, also checks style
– The author prefers this one
– Although it warns about many things, undesired warnings can be turned off via comments and

pylintrc files
– Uses a limited form of type inference to typecheck code

● PyChecker – imports everything, does not check style
● Pyflakes – avoids overnotification, does not check style
● PyCharm (an IDE with Static Analysis features)
● Pycodestyle (formerly pep8, style only)
● Flake8 (combination of Pyflakes and pep8 (now Pycodestyle))
● Pymode / Syntastic (vim plugins)
● Bandit (security oriented)
● Tidypy (collects many static analyzers into a single tool)

Pylint example invocation

● pylint file1.py file2.py … filen.py
● Gives back a flood of style warnings on most code, and sometimes some real errors
● EG:

$ /usr/local/cpython-3.6/bin/pylint --max-line-length=132 equivs3e bufsock.py python2x3.py
readline0.py

No config file found, using default configuration

************* Module bufsock

W:233, 0: FIXME: This could be sped up a bit using slicing (fixme)

C: 49, 0: Invalid class name "rawio" (invalid-name)

C:119, 0: Invalid class name "bufsock" (invalid-name)

************* Module python2x3

R: 51, 8: Unnecessary "else" after "return" (no-else-return)

--

Your code has been rated at 9.95/10 (previous run: 9.00/10, +0.95)

this-pylint

● Something the author wrote
● It runs pylint twice: Once for Python 2.x, Once for

Python 3.x. You can optionally turn off one of them.
● It eliminates all pylint output, unless something relevant

is found, to keep your “build” quiet
● It also exits (negative logic) False iff a problem is found
● It also has a final fallback means of disabling a warning,

in case comments and/or pylintrc aren’t enough.
● http://stromberg.dnsalias.org/~strombrg/this-pylint/

Writing to Take Full Advantage of
Static Analysis (Part 1)

● Disable unimportant warnings, whether by comments (# pylint:
disable=) or pylintrc

● EG:
pylint: disable=wrong-import-position

Can appear at:
● The end of a line of code
● On a callable (function, method)
● On an entire class
● Or at the top of an entire python file

● Or generate an rcfile:
 pylint --generate-rcfile > pylintrc

...and edit it; handles an entire project.

Writing to Take Full Advantage of
Static Analysis (Part 2)

● Avoid things that your static analyzer does not
understand well, EG:
– Inheritance (use composition instead where practical)

– Named tuples (use a class)

– Argparse (do manual command-line argument parsing)

– Metaclasses

● There’s a philosophical issue here: Should you change
how you code to get the best error checking, even at
the expense of a little more keyboarding? Some say
yes, some say no.

Complementary Tech

● Static analysis combines well with unit testing
● Unit testing is best for testing your code’s

“happy path”, plus some but not all sad paths
● Static analysis can do some happy path, but it

also scrutinizes things like error reporting that
are impractical to fully unit test.

III. Gradual Typing – What is it?

● Allows the developer to manifestly declare
some variables and not others

● Can effectively be used just for function
signatures, and perhaps a couple of collection
types in callable bodies

● ...or more, if you feel like it.

Gradual Typing Tools

● Mypy – The author uses this one
● Pytype – from Google, but less well known
● Pylint – someday, not today. I believe it’s on

their roadmap
● PyCharm – or so I’ve been told

Mypy and Python Version

● Type annotations available in Python 3.0 and
up

● typing module comes with Python 3.[56]
● typing module available as a backport for 2.7

and 3.[234]
● Can be made to work with Python 2.x, but it

requires separate files for type declarations

Mypy Sample Invocation

● /usr/local/cpython-3.6/bin/mypy equivs3e
● A good typecheck is shown by no output

Example Formal Parameter with
Type: Python 3.x

def get_mtime(filename: str) -> float:

 """Return the modification time of filename."""

 stat_buf = os.stat(filename)

 return stat_buf.st_mtime

Declaring the Type of a Variable:
Python 3.5

● from typing import List, Dict
● size_dict = {} # type: Dict[int, List[str]]
● The comment does it
● Sometimes helps mypy
● Also works on Python 3.6

Declaring the Type of a Variable:
Python 3.6

● from typing import List, Dict
● size_dict: Dict[int, List[str]] = {}
● Sometimes helps mypy
● No weird comment involved
● Confuses pylint 1.7 and before? Pylint 1.8

should be able to deal.

Declaring Types Used Before They
Have Been (Fully) Defined

class Fraction:
def __init__(self):

self.numerator = 0

self.denominator = 1

def __lt__(self, other: ‘Fraction’) -> bool:
...

What uses type annotations

● The CPython interpreter itself treats type
annotations as mere documentation; they have
no other meaning to Python

● CPython needs an external tool like mypy or
PyCharm to do type checking

● Cython has true type declarations, but they are
on a cdef, not a def with type annotations –
otherwise it would be difficult to tell a Python int
from a C int

The End

● Questions?
● Comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

